An Empirical Study of Finding Approximate Equilibria in Bimatrix Games
نویسندگان
چکیده
Abstract. While there have been a number of studies about the efficacy of methods to find exact Nash equilibria in bimatrix games, there has been little empirical work on finding approximate Nash equilibria. Here we provide such a study that compares a number of approximation methods and exact methods. In particular, we explore the trade-off between the quality of approximate equilibrium and the required running time to find one. We found that the existing library GAMUT, which has been the de facto standard that has been used to test exact methods, is insufficient as a test bed for approximation methods since many of its games have pure equilibria or other easy-to-find good approximate equilibria. We extend the breadth and depth of our study by including new interesting families of bimatrix games, and studying bimatrix games upto size 2000×2000. Finally, we provide new close-to-worst-case examples for the best-performing algorithms for finding approximate Nash equilibria.
منابع مشابه
Nash Equilibria in Perturbation Resilient Games
Motivated by the fact that in many game-theoretic settings, the game analyzed is only an approximation to the game being played, in this work we analyze equilibrium computation for the broad and natural class of bimatrix games that are stable to perturbations. We specifically focus on games with the property that small changes in the payoff matrices do not cause the Nash equilibria of the game ...
متن کاملZero-Sum Game Techniques for Approximate Nash Equilibria
We apply existing, and develop new, zero-sum game techniques for designing polynomial-time algorithms to compute additive approximate Nash equilibria in bimatrix games. In particular, we give a polynomial-time algorithm that given an arbitrary bimatrix game as an input, outputs either an additive 1 3 -Nash equilibrium or an additive 1 2 -well-supported Nash equilibrium; and we give a polynomial...
متن کاملApproximate and Well-supported Approximate Nash Equilibria of Random Bimatrix Games
We focus on the problem of computing approximate Nash equilibria and well-supported approximate Nash equilibria in random bimatrix games, where each player's payoffs are bounded and independent random variables, not necessarily identically distributed, but with common expectations. We show that the completely mixed uniform strategy profile, i.e. the combination of mixed strategies (one per play...
متن کاملEfficient Algorithms for Constant Well Supported Approximate Equilibria in Bimatrix Games
In this work we study the tractability of well supported approximate Nash Equilibria (SuppNE in short) in bimatrix games. In view of the apparent intractability of constructing Nash Equilibria (NE in short) in polynomial time, even for bimatrix games, understanding the limitations of the approximability of the problem is of great importance. We initially prove that SuppNE are immune to the addi...
متن کاملWell Supported Approximate Equilibria in Bimatrix Games: A Graph Theoretic Approach
We study the existence and tractability of a notion of approximate equilibria in bimatrix games, called well supported approximate Nash Equilibria (SuppNE in short). We prove existence of ε−SuppNE for any constant ε ∈ (0, 1), with only logarithmic support sizes for both players. Also we propose a polynomial–time construction of SuppNE, both for win lose and for arbitrary (normalized) bimatrix g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015